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Abstract—Principal Component Analysis (PCA) is a widely
used linear dimensionality reduction method, which assumes that
the data are drawn from a low-dimensional affine subspace of a
high-dimensional space. However, it only uses the feature
information of the samples. By exploiting structural information
of data and embedding it into the PCA framework, the local
positional relationship between samples in the original space can
be preserved, so that the performance of downstream tasks based
on PCA can be improved. In this paper, we introduce Hessian
regularization into PCA and propose a new model called
Graph-Hessian Principal Component Analysis (GHPCA).
Hessian can correctly use the intrinsic local geometry of the data
manifold. It is better able to maintain the neighborhood
relationship between data in high-dimensional space. Compared
with other Laplacian-based models, our model can obtain more
abundant structural information after dimensionality reduction,
and it can better restore low-dimensional structures. By
comparing with several methods of PCA, GLPCA, RPCA and
RPCAG, through the K-means clustering experiments on USPS
handwritten digital dataset, YALE face dataset and COIL20
object image dataset, it is proved that our models are superior to
other principal component analysis models in clustering tasks.

Keywords—dimensionality reduction; principal component
analysis; manifold learning; graph; hessian regularization

I. INTRODUCTION

With the advent of the era of Big Data[l], the size,
dimensionality, and complexity of data are expanding at an
explosive rate. In some high-dimensional datasets, the number
of features is much larger than the sample size, making it
impossible to learn valuable information through them. In
addition, the data is easy to introduce useless information in the
process of acquisition[2], causing it often contains significant
amounts of noise, corrupted entries or outliers. Therefore, how
to extract useful information from destroyed high-dimensional
data and reduce the data dimensionality has become one of the
main tasks of machine learning.

At present, the dimensionality reduction has many
applications in the fields such as pattern recognition and
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computer vision. In order to accomplish this task, different
types of dimensionality reduction algorithms are introduced.
Principal Component Analysis[2][3] is one of the most
classical dimensionality reduction algorithm, which projects
data into low-dimensional space by the orthogonal
transformation. However, it has drawbacks in some respects, so
many extended algorithms based on PCA are proposed. These
algorithms can be broadly divided into five categories: robust
PCA methods, sparse PCA methods, probabilistic PCA
methods, kernel PCA methods and manifold regularized PCA
methods.

A. Robust Principal Component Analysis Methods

Due to the existence of quadratic terms, PCA is more
sensitive to outliers. In response to this problem, Ding et al.[4]
proposed Rotational Invariant L1-norm Principal Component
Analysis (R1-PCA), which effectively handles outliers by
proposing an R1 norm constraint. Candes et al.[5] proposed a
new solution to make PCA more robust to outliers, named
Robust Principal Component Analysis (RPCA). It decomposes
the original data matrix into a sum of a low-rank matrix and a
sparse matrix through a penalty term, and the corrupted data is
decomposed into a sparse matrix.

B. Sparse Principal Component Analysis Methods

The principal components (PCs) obtained by PCA is a
linear combination of all the original variables. So it is often
difficult to interpret PCs. Zou et al. [6]used the lasso (elastic
net) to propose a new method called Sparse Principal
Component Analysis (SPCA), which produces a modified
principal component with sparse loadings. Seghouan et al.[7]
introduced Adaptive Block Sparse Principal Component
Analysis (BSPCA) to generate improved principal components
with block sparse loads. Shen et al. [8]proposed a sparse
Principal Component Analysis via regularized singular value
decomposition (sPCA-rSVD), using the connection of PCA
with SVD and extracting the PCs by solving the low-rank
matrix approximation.

C. Probabilistic Principal Component Analysis Methods

PCA does not consider the probability distribution of the
data and lacks the relevant probability model of the observed
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data. Tipping et al. [9]introduced a new method called
Probabilistic Principal Component Analysis (PPCA) to
determine the principal axis of data from the maximum
likelihood estimation in a Gaussian latent variable model which
is related to the factor analysis. Lawrence et al. [10]proposed
the dual probabilistic Principal Component Analysis (DPPCA)
so that linear mapping from the embedded space can be easily
nonlinearized by Gaussian processes.

D. Kernel Principal Component Analysis Methods

In many real-world tasks, the proper low-dimensional
embedding can be found through nonlinear mapping. To solve
this issue, Scholkopf et al. [11]used the kernel function to
nuclearize PCA and proposed Kernel Principal Component
Analysis (KPCA). Ding et al.[12]proposed an Adaptive Kernel
Principal Component Analysis (AKPCA) method, which can
flexibly and accurately track kernel principal components to
overcome the batch nature of KPCA and adaptively adjust
kernel principal components.

E. Manifold Regularized Principal Component Analysis
Methods

For a given dataset, we can use its feature and structure
information. And we can build graph[13], i.e., structure
information between the samples by the feature data. Therefore,
the difference between vector data and graph is sometimes
ambiguous. We can use multiple data sources to get better
results. Based on this idea, Zhang et al.[14] proposed Manifold
Regularization Low-Rank Matrix Factorization (MMF), which
incorporates manifold regularization to the matrix factorization.
Jiang et al. [15]embed graph into the classical PCA and
proposed Graph-Laplacian Principal Component Analysis
(GLPCA), which combines the classic PCA with Laplacian
embedding. The structural relationships between the samples
are embedded in a low-dimensional representation. In order to
enhance the robustness of the algorithm to outliers while
introducing the graph information, Shahid et al.[16] proposed
Robust Principal Component Analysis on Graphs (RPCAG),
which embeds Laplacian embedding into the RPCA.

Because Laplacian seeks the problem of the first derivative,
the solution is biased towards constant and the extrapolation
ability is not strong, and the obtained structural information is
not rich enough. To solve these problems, we propose to
introduce Hessian regularization[17][18][19][20] into the
framework of principal component analysis. Hessian has a
richer null space, and due to the geodesic function in null space,
it can correctly utilize the intrinsic local geometry of the data
manifold, correctly reflect the positional relationship between
the samples, and obtain richer structural information, so that the
low-dimensional representation contains more abundant graph
information. In this paper, K-means clustering experiments
were performed in handwritten digital database USPS, face
database YALE and object image database COIL20. Compared
with several dimensionality reduction methods of PCA,
GLPCA, RPCA and RPCAG, it is proved that our model is
superior to other models in clustering tasks.

Expansion: We also introduce Hessian into the framework
of RPCA to enhance the robustness of the algorithm to outliers,
to verify the superiority of the Hessian-based models and the

Laplacian-based models, and the generalization ability of
Hessian.

The rest of this article is organized as follows. Section II
provides some related works. In Section III, we present our
proposed GHPCA and GHRPCA algorithms. The solution of
the algorithms is given in Section IV. Experimental setup and
experimental results are given in Section V. Finally, we
conclude this article in Section VI.

II. RELATED WORK

In this section, we review several related works involved in
our model, including principal component analysis, robust
principal component analysis, and then analyze Hessian
regularization and Laplacian regularization to prove the
advantages of Hessian in maintaining local structure
information.

A. Principal Component Analysis

Given a data matrix X = [x,%,,"--,X,] € RP*" containing n
p -dimensional sample data, the classical PCA finds k
orthogonal feature vectors, and forms a k-dimensional linear
subspace U € RP*¢ A projection matrix ¥ € R¥™ is obtained
by projecting X into the U. Principal component analysis finds
U and Y by minimizing:

; _ 2 Ty _
r{},llp”X UYllz st. U'U =1 (1)

where U = [uq,uy,++uy] is called the principal direction,
and Y = [y1,y,,-¥,] is the principal component of our
demand. |||z is the Fourier norm of matrix. Using the
obtained principal component Y instead of the original data
matrix X to perform other tasks.

B. Robust Principal Component Analysis

When performing tasks, the data used is generally mixed
with noise, which will affect the output of the task. A potential
assumption of the classical PCA is that the noise involved is
Gaussian, but less robust to other types of noise. Robust PCA
proposes to use the form of matrix decomposition to eliminate
the influence of noise on it. Its model is shown in:

min [|AIl. +AllSlly s.t. X = A+ )

where A € RP*™ is the low-rank matrix containing the
required information, which is the product of U and Y
obtained from the classical PCA(A = UY). S € RP*" is the
sparse matrix containing noise information, and the parameters
A control the proportion of the sparse matrix S. |||, is the
nuclear norm of matrix, ||-||; isthe ; norm.

C. Laplacian Regularization and Hessian Regularization

Suppose C®(M) is the smooth functions set on the
manifold M,M in the Euclidean space. Laplacian regularization
as follows:

Sa(h) = L, IVfIPav (o) A3)
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where f€C®(M) and f: M — R, dV(x) represents a
volume element, and S, is the null space which {f €
C*(M)|S(f) =0}, is just constant function on M . S:
C”(M) — R represents the regularization.

Similarly, Hessian regularization is defined as:

9%f 2
SHess(f) = fM Z:,lszl (0)67-0)65) dV(X) 4)
Hessian regularization performs a second-order partial
derivative on f. Eells and Lemaire[21] proved the following
proposition.

Proposition 1. (Eells and Lemaire[21]) A function f : M —
R with f € C*(M) has zero second derivative, V,V,f]|, =
0,Vx € M , if and only if for any geodesic y:(—egg) > M
parameterized by arc length s, there exists a constant c,
depending on y such that

a%f(}/(s)) =cV—e<s<e (5)

These functions which satisfy a% f(y(s)) =c, are called

geodetic functions. They reflect constant changes of geodesic
distance in the manifold. Therefore, the Hessian
regularization’s null space are linear functions with a constant
change in geodesic distance, in other words, the null space of
Hessian is more abundant than Laplacian. And because of the
geodesic functions in null space, the Hessian regularization can
better maintain the local structure.

III. GRAPH-HESSIAN PRINCIPAL COMPONENT ANALYSIS

In this part, we will introduce the principal component
analysis on Graph-Hessian, and its extended model robust
principal component analysis on Graph-Hessian. There is a
data matrix containing n p -dimensional sample data, we will
introduce our proposed models GHPCA and GHRPCA.

A. Graph-Hessian Principal Component Analysis

For Principal Component Analysis, we want to make the
low-dimensional representation to include richer graph
information. So we build Hessian regularization into the classic
PCA framework and propose the GHPCA model:

r{llilp IX = UY||Z + ytr(YHYT) sit. YYT =1 (6)
here U € RP*? is the principal direction, ¥ € R™" is the
principal component. |||z is the Fourier norm of matrix, the
parameter ¥ = 0, and it controls the smoothness of ¥ and the
proportion of the two parts in the model, and H is the Hessian
matrix, tr(-) represents the trace of the matrix.

The first half of the model represents the reconstruction
error of the classical PCA, ensuring that the resulting
low-dimensional representation reflects the original data to the
greatest extent. The second half is Hessian regularization.
Using Y and Hessian to construct regularization, the principal
component ¥ can benefit from the sample similarity graph. The

two-part combination can make Y benefit both at the same time.

And this model has a closed-form solution, the solution can be
solved by the Lagrange multiplier method, which will be given
in the next section.

Il
0
T ¢3? ) B A

» H =

.’ .- **.:,**-E- ¢

me °° St

Hessian =
:

high-dimensional low-dimensional
space space

Fig. 1. The framework of GHPCA.

B. Graph-Hessian Robust Principal Component Analysis

For the Robust Principal Component Analysis, we hope that
the low-rank matrix A contains the manifold information
between the samples, so the matrix A and the Hessian matrix
are used to form the regularization embedded into the
framework of the RPCA. The GHRPCA model as follows:

min IAll, + AlISIl, + ytr(AHAT) st. X =A+S  (7)

here A is the low-rank matrix, S is the sparse matrix, H is
the Hessian matrix and the parameters control the sparsity of
the model, and parameters y = 0 control the smoothness of A.
[I-ll. is the nuclear norm of matrix, tr(-) represents the trace of
the matrix, ||-||; isthe l; norm.

The first two parts of the model represent the
decomposition model of RPCA, resulting in low-rank matrix
A containing useful information, separating the noise S. The
latter part is Hessian regularization. Using A and Hessian to
construct regularization, the graph information can be
embedded in the low-rank matrix A. 4 is the product of U and
Y, so that both matrices can be affected by the graph and reflect
the original data more realistically. We use the ADMM
algorithm to solve the model, as shown in section IV.

Laplacian is a constant function along the null space of the
underlying manifold, while Hessian has a richer null space and
contains richer local geometric relationships. Therefore, the
obtained principal component Yor low-rank matrix A contains
more abundant structural information. Due to the existence of
second-order partial derivatives, Hessian has a stronger ability
to construct sample neighbor relations, which makes the
relationship between similar samples more closely when
performing downstream tasks such as clustering.

IV. ALGORITHM

In this section, we present solutions of the above two
models separately, and briefly introduce the solution steps of
the Hessian matrix and analyze the computational complexity
of our models.

A. Graph-Hessian Principal Component Analysis

For the GHPCA model, it has a closed-form solution, and
the solution process is as follows:

Using the Lagrange multiplier method for (6) to get:
PP _ 2 T _vyyT
r{}l‘lynf = min IX = UY|l5 + ytr(YHY") + u(I = YY") (8)
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Algorithm 1 Closed solution of GHPCA

I:Input X, Hyy

2: Calculating matrix (— X7X + yH)

3: Calculating the Covariance matrix (— X7X +

Y (X" X+yH) "

4: Calculating the eigenvector [Vq,Y,,*-,¥,] corresponding to
the first d minimum eigenvalues

5: Combining feature vectors into matrix ¥ = [y1,V5,"**,Vxl

First, solving the principal direction matrix U, fixing the
principal component Y . Using (8) to find the partial guide
[22]for U, and the derivative is equal to 0 to get:

of _a(lx-uvliz) a((x—-Uv)(X—-Uv)"
v au B au
=—2XYT+2U0=0 )
SoU = XYT.

Second, solving the principal component Y . Substituting
into (8):

; Ty |2 T T
min [1X = XY7Y||% + ytr(YHY") + (I —YY")  (10)
Then finding the partial derivative for ¥ and letting the
derivative equal to O:
dg  Ar(Y(=X"X +yH)Y") +u(l - YY"))
ay oY
=(—X"X+yH)—uy =0 (11)

Therefore, the principal component Y is the feature vector
corresponding to the first d smallest eigenvalues of the matrix
(= X"X +yH).

B. Graph-Hessian Robust Principal Component Analysis

For the GHRPCA model, we use the Alternating direction
method of multipliers (ADMM) algorithm[23] to rewrite the
model to:

min Al + AlISI; + ytr(LHLT) s.t. X = A+ S,A=L (12)
This can decompose an entire problem into two
sub-problems, which is convenient for solving. Then, using the

Augmented Lagrange Multiplier method[24] to get the
expression:

(4,5,L) = argmin ||A||, + Al[S|ly + ytr(LHLT) + A, (X —
(ASL)
A=) +2x - a-SI2+ 0L - A) +
B2 2
LyiL - all2 (13)
here A; and A, are the dual variables.

Then using the dual rise[25] method to solve a variable and
fixing other variables. The following is a detailed process.

The first step: fixing S, L,A{,A,, solving for A.

—argmmllAII +AX—-A- S)+&||X A=S]|2

+ A (L —A) +&||L A||2

= argm1n||A|| +—||X A— S+[31_1A1||

BlL-a+ ﬁ2_1A2||2

= argmin 14]. +ﬁ1+ﬁ2 IL -

ﬁl( —S+B1” 1/\1 +ﬁ2 L+ﬁ2 1/\2 |
B1+B2 |

(14)

According to the definition of the singular value threshold
operator of the matrix[26]:

. 1
arg;mHTIIAII* +2 11X = Pollf = Do(Po) (15)

among them:
D.(X) =US, )V ,if X =UzVT (16)
And for the contraction operator S, [27], defined as:
S, = sgn(x)max(|x| — 7,0) (17)
So getting the final iteration of 4 :

A = p B1 (X—5K+[>’1_1/\1k)+[>’2 (Lk+ﬁ2_11\zk)
I (TR P B1+B2

(18)
here k is the number of iterations.

The second step: fixing 4, L,A{,/A,, solving for S.

—argm1n7\||5||1+A1(X A— S)+&||X A-S|2

argmmkIISlh +—||X A- 5+ﬂ1_1A1||

=Sa(X—A+p M) (19)
B1
Thus S¥1 =8, (X — A + g, 7'A,%) (20)
B

The third step: fixing A, S,A;,A;, solving for L.

B>

L —argmmytr(LHLT)+A2(L A)+ L — All%

= argminytr(LHLT) +%||L —-A+ 52_1A2||i (21)
L

This is a smoothing function, so using the optimality
condition to find a closed-form solution of L [16], and using the
projection conjugate gradient method to iterate L [28][29]:

_ A
L4 = By(vH + foD) (4941 - 22 22)

The final step: iterating Lagrange multipliers A; and A, ,
fixing 4, L,S.

A1k+1 — Alk + ,81(X — Ak+1 _ Sk+1) (23)
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Algorithm 2 GHRPCA's ADMM algorithm

1: Input X,HAy
2: Internalize: k=1 ;A= 1/1/max(p,n) s y=0; B =
1.25/max eigenvector(X); f, = 0.01
3: Internalize: A = zeros(p,n) ; S =zeros(p,n) ; L=
zeros(p,n)
4: Internalize: Ay =X —A—-S; A, =L —A
5: while not converged do
B1 (X—5K+B171A1k)+l32 (Lk+ﬁ271/\2k)
B1+B2

coAk+1 —
6: A = D([)’l +p)71
7. Sk =5, (X — A+ 8,71 A 5)
B1

k
8 L = By(vH + foD) ™ (a4 -2
2

9: A = A+ By (X — AR — K1) and

A2k+1 — Azk +ﬁ2(Lk+1 _Ak+1)
10: end while
11: Output 4,5

TABLE L. DATASETS INFORMATION COMPARISON
Dataset Class Dimensionality Size
USPS 10 256 9298
YALE 15 1024 165
COIL20 20 16384 1440

C. Calculation of the Hessian Matrix
In this section, we brief the solution steps for the Hessian

matrix to get the local geometry of the sample in the following
steps[17]:

Step 1: Construct a neighbor matrix M. Find the k-nearest
neighbors’ collection NN;. For each neighborhood N; for each
sample point x;i = 1,2,-~-n. Form a matrix M' € R¥" the
j-th row of the matrix M* is Xj— X, X; = Ave{xj:x]- € ]\fi}.

Step 2: Obtain tangential coordinates. Perform Singular
value decomposition on M* to obtain matrices U, D and V.
The first d columns of U give the tangent coordinates of the
sample points in ;.

Step 3: Calculate the Hessian estimator. Perform a least
-squares estimation on Hessian get H'. If f is a smoothing
function f: M —> R, f; = (f(m;)) ,then all high-dimensional
observations inV; are mapped from f to f; The set of real
numbers constitutes a vector v'. Then, all high-dimensional
observation samples in V; consist of a real set of f to f; to
form a vector v'. Then, the product Hv' gives a vector of
length d(d + 1)/2, and the element 9%f / 0u;0u; in the vector
is an estimate of the Hessian matrix.

Step 4: Calculate the quadratic form H . According to
“]{ij = ler ((Hl)r,i(Hl)r’j)

matrix #;;. The matrix H' € R¥*D/2k l50 refers to the
Hessian estimate of the neighbor matrix. The row 7 represents
the corresponding element in the Hessian matrix, and the
column i represents the corresponding neighbor points.

to calculate the symmetric

D. Computational Complexity Analysis

In the process of solving the Graph-Hessian Principal
Component Analysis, the main cost is the singular value
decomposition to obtain the eigenvalues and eigenvectors.
Therefore, the complexity of this model is similar to that of
PCA.

The Graph-Hessian Robust Principal Component Analysis
is solved by the Augmented Lagrange Multiplier methods. This
algorithm is sufficient for good accuracy in our model with a
small number of iterations. The complexity of nuclear norm
proximal computation for updating 4 is O(np® + p*) and the
computational complexity of the Conjugate Gradient method
for updating L is O(np).Thus, the main cost of each iteration
corresponds to the computation of nuclear proximal operator.

V. EXPERIMENTS

In this paper, we use the model to perform an experiment
based on principal component analysis: K-means clustering
based on lossless and lossy data in low-dimensional space. Our
experiment is to show the robustness of our proposed model to
noise and the generalization ability for different types of
datasets. Our experiments were conducted on three different
types of datasets, and we thought that four different levels of
data corruption were introduced and compared with the five
existing dimensionality reduction models.

A. Datasets Introduction

This experiment involves three databases: the handwritten
digital dataset USPS[30], the face dataset YALE[31], and the
object image dataset COIL20[32]. The data sets used are all
relatively high-use datasets, and the tag information for each
dataset is known.

Handwritten Digital Dataset USPS[30]: Fully known as the
United States Postal Service handwritten digital dataset,
consisting of 10 handwritten digital scan crops from 0 to 9,
comprising a total of 9298 8-bit grayscale images, the image
background is black, the size of each image is 16x16 pixels.
Part of the sample pictures are shown in Fig. 2.

Face Dataset YALE[31]: Created by Yale Center for
Computing Vision and Control. This dataset contains 165
images in GIF format. A total of 15 people participated in the
film. Pictures of 10 people under certain conditions are
selected, as shown in Fig. 3. Each person has 11 different
facial expressions or configured images, each with different
facial expressions. Or configure one: center light, with glasses,
happy, left light, no glasses, normal, right light, sad, sleepy,
surprised and wink, each picture is 32x32 size.

Object image dataset COIL20[32]: Fully called Columbia
University Image Library dataset, this dataset contains 1,440
sheets, shooting 20 objects from different angles, shooting an
image every 5 degrees, 72 images per object. Each image is
uniformly sized, with a black background and a size of
128%128 pixels. A partial type of pictures are shown in Fig. 4.

B. Parameter Selection

For the GHPCA model, there is one parameter: Graph
regularization coefficient y. The value of the parameter y is
determined by means of cross-validation.
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Fig. 4. Sample images from the COIL20 dataset.

For the GHRPCA model, there are two parameters:
Sparsity A and Graph regularization coefficient y. The para-

meter A can be set approximately equal to 1 / Jmax(p,n)[5],
where n is the number of data samples and p is the
dimensionality of the sample. After being fixed, the value of
the parameter y is determined by cross-validation.

C. K-means Clustering Experiment

In this paper, the K-means clustering experiment based on
PCA[33]is used to compare the robustness of different models
to lossy information and the generalization ability for different
datasets. We wuse all the data from each dataset for
unsupervised clustering experiment. The label information of
each sample is known and the total number of categories is
also known.

a) Data Processing

In each dataset, we introduce four different degrees of
missing: no missing, randomly missing 15% of the pixel value,
randomly missing 35% of the pixel value and randomly
missing 50% of the pixel value. Generating a uniformly distri-

TABLE II. THE CLUSTERING CORRECT RATE (%) WITH DIFFERENT
DIMENSIONALITY REDUCTION MODELS

Data Mo-

Set del GH
K-me PCA GL GH RPC | RPC RPC
ans PCA PCA A AG

. A
Miss
0% 59.43 | 61.05 | 6542 | 66.15 | 71.79 | 79.77 | 80.29
15% 66.77 | 68.31 | 72.01 | 73.02 | 71.63 | 78.29 | 79.32
Us
PS
35% 67.72 | 68.81 | 71.49 | 73.01 | 69.90 | 77.23 | 77.78
50% 68.21 | 70.79 | 72.50 | 73.78 | 71.18 | 71.62 | 73.40
0% 46.79 | 44.00 | 48.48 | 51.27 | 5091 | 54.79 | 55.52
15% 40.85 | 39.15 | 41.09 | 45.09 | 52.73 | 54.55 | 56.48
YA
LE
35% 34.79 | 36.36 | 37.33 | 38.79 | 44.61 | 46.18 | 47.52
50% 30.30 | 32.97 | 34.55 | 36.61 | 38.42 | 40.73 | 41.82
0% 59.89 | 61.08 | 61.15 | 62.22 | 62.13 | 65.65 | 65.96
cor | 15% 59.44 | 61.07 | 62.01 | 62.85 | 62.29 | 64.93 | 66.08
L20
35% 58.06 | 59.51 | 60.01 | 61.85 | 64.96 | 65.06 | 66.19
50% 55.22 | 59.49 | 59.74 | 60.86 | 61.43 | 62.56 | 63.04

buted pseudo-random integer as the position of the pixel, and
writing 0 to the original data matrix.

For each dimensionality reduction model, after the intro-
duction of the missing, we perform preprocessing of zero
mean and unit standardization based on sample features for all
three datasets.

b) Repeatability Experiment Setup
For each degree of missing, we performed 5 different
randomly independent replicates experiments (the no missing
experiment was also performed 5 times). After the
dimensionality reduction is completed, each group of data is
subjected to 100 times K-means clustering experiments to
calculate the correct rate of the experiment.

¢) Clustering Correct Rate

The clustering correct rate is calculated by comparing the
original label with the label information obtained after
clustering. The result of each missing was taken as the
minimum of the 100 times experiments, and the final result of
the experiment was taken as the average of 5 randomly
missing experiments.

D. Experimental Result

K-means experiments were performed on three different
databases for different dimensionality reduction models. All the
specific experimental data are shown in Table II. The data
from
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Fig. 5. The clustering correct rate (%) with Hessian-based models and
Laplacian-based models on USPS dataset.
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Fig. 6. The clustering correct rate (%) with Hessian-based models and
Laplacian-based models on YALE dataset.

Result for COIL20 Dataset
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Fig. 7. The clustering correct rate (%) with Hessian-based models and
Laplacian-based models on COIL20 dataset.

our model has been boldly displayed. We can see that our
Hessian models have a higher accuracy rate than other models.
A detailed comparison of the Hessian-based model of the same
category with the Laplacian-based model is shown in Fig. 5,
Fig. 6, Fig. 7.

Fig. 5 shows a bar chart showing the correct clustering rate
of our Hessian-based models and Laplacian-based models on
the USPS dataset. Fig. 6 shows a bar chart of the results of our
Hessian-based models and Laplacian-based models on the
YALE dataset. Fig. 7 shows a bar chart of the results on the
COIL20 dataset. The X-axis indicates the proportion of data
missing: 0%, 15%, 35%, 50%, and the Y-axis represents the
correct rate of the experimental results. Models involved in
each figure: GLPCA, GHPCA, RPCAG and GHRPCA. The
model represented by each column is shown on the right side of
the figure, and our two models are represented by solid
columns.

We can see that, whether in the handwritten digital, face or
object image dataset, our proposed GHPCA has higher
accuracy than GLPCA under four different proportions of data
missing, our proposed GHRPCA has higher -clustering
accuracy than RPCAG. We can get our model to have better
ability for different features, such as face features, digital
features and object features. In other words, Hessian
regularization is also suitable for principal component analysis
models.

And we prove that Hessian can get more useful information
than Laplacian. Therefore, we can gain that our models can still
obtain more abundant local structure information after
dimensionality reduction in different data, even in the case of a
great deal of data missing. We have used this ability of
Hessian-based models to get a better clustering effect.

Thence we conclude that our models are superior than other
models on different datasets, which shows that they can keep
more local geometric relations in low-dimensional space, more
robust to noise and have better generalization ability.

VI. CONCLUSION

Extracting useful information from destroyed high-
dimensional data and reduce the data dimensionality has
become one of the main tasks of machine learning. Principal
Component Analysis is the simplest and most popular linear
dimensionality reduction method. In this paper, we use the
Hessian to construct the spectral regularization into the
framework of Principal Component Analysis and propose two
models: Graph-Hessian Principal Component Analysis
(GHPCA) and Graph-Hessian Robust Principal Component
Analysis (GHRPCA).

Since the null space of the Hessian is richer than the
Laplacian, it is more abundant and accurate in terms of
structural information between the reaction samples. By the
K-means clustering experiments on USPS handwritten digital
dataset, YALE face dataset and COIL20 object image dataset,
by comparing with several methods of PCA, GLPCA, RPCA
and RPCAG, it proves that our proposed Hessian-based
Principal Component Analysis models are superior to other
Principal Component Analysis models. Our models can get
more abundant information. In future work, we will further

1500



study its characteristics in order to increase accuracy and
reduce the time cost of operation.
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